Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II.
نویسندگان
چکیده
Buforin II is a 21-aa potent antimicrobial peptide that forms, in a hydrophobic medium, an amphipathic structure consisting of an N-terminal random coil region (residues 1-4), an extended helical region (residues 5-10), a hinge (residue 11), and a C-terminal regular alpha-helical region (residues 12-21). To elucidate the structural features of buforin II that are required for its potent antimicrobial activity, we synthesized a series of N- and C-terminally truncated or amino acid-substituted synthetic buforin II analogs and examined their antimicrobial activity and mechanism of action. Deletion of the N-terminal random coil region increased the antibacterial activity approximately 2-fold, but further N-terminal truncation yielded peptide analogs with progressively decreasing activity. Removal of four amino acids from the C-terminal end of buforin II resulted in a complete loss of antimicrobial activity. The substitution of leucine for the proline hinge decreased significantly the antimicrobial activity. Confocal fluorescence microscopic studies showed that buforin II analogs with a proline hinge penetrated the cell membrane without permeabilization and accumulated in the cytoplasm. However, removal of the proline hinge abrogated the ability of the peptide to enter cells, and buforin II analogs without a proline hinge localized on the cell surface, permeabilizing the cell membrane. In addition, the cell-penetrating efficiency of buforin II and its truncated analogs, which depended on the alpha-helical content of the peptides, correlated linearly with their antimicrobial potency. Our results demonstrate clearly that the proline hinge is responsible for the cell-penetrating ability of buforin II, and the cell-penetrating efficiency determines the antimicrobial potency of the peptide.
منابع مشابه
Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I.
The intestinal epithelium forms a first line of innate host defense by secretion of proteins with antimicrobial activity against microbial infection. Despite the extensive studies on the antimicrobial host defense in many gastrointestinal tracts, little is known about the antimicrobial defense system of the stomach. The potent antimicrobial peptide buforin I, consisting of 39 aa, was isolated r...
متن کاملMechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide.
Buforin IIb is a novel cell-penetrating anticancer peptide derived from histone H2A. Here we analyzed the anticancer activity and cancer cell-killing mechanism of buforin IIb. Buforin IIb displayed selective cytotoxicity against 62 cancer cell lines by specifically targeting cancer cells through interaction with cell surface gangliosides. It traversed cancer cell membranes without damaging them...
متن کاملRole of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides.
Translocation of cell-penetrating peptides is often promoted by increased content of arginine or other guanidinium groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. This study compared the activity of three histone-derived antimicrobial peptides-buforin II, DesHDAP1, and parasin-with variants that contain only lysin...
متن کاملA Proline-Hinge Alters the Characteristics of the Amphipathic α-helical AMPs
HP (2-20) is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20) by substituting Trp for Gln(17) and Asp(19) (Anal 3) increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structu...
متن کاملMechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions.
The mechanism of action of buforin II, which is a 21-amino acid peptide with a potent antimicrobial activity against a broad range of microorganisms, was studied using fluorescein isothiocyanate (FITC)-labeled buforin II and a gel-retardation experiment. Its mechanism of action was compared with that of the well-characterized magainin 2, which has a pore-forming activity on the cell membrane. B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 15 شماره
صفحات -
تاریخ انتشار 2000